

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

ESR OF Ti(III) in LiCl-KCl Eutectic

N. Beukema^a; D. C. Koningsberger^a; J. L. Verbeek^b

^a Physics Department, University of Technology Eindhoven, Eindhoven, The Netherlands ^b Chemistry Department, University of Technology Eindhoven, Eindhoven, The Netherlands

To cite this Article Beukema, N. , Koningsberger, D. C. and Verbeek, J. L.(1969) 'ESR OF Ti(III) in LiCl-KCl Eutectic', *Spectroscopy Letters*, 2: 10, 289 — 294

To link to this Article: DOI: 10.1080/00387016908050211

URL: <http://dx.doi.org/10.1080/00387016908050211>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ESR OF Ti(III) IN LiCl-KCl EUTECTIC

N. Beukema, D.C. Koningsberger and J.L. Verbeek^{*}
Physics Department
Chemistry Department (*)
University of Technology Eindhoven
Eindhoven/The Netherlands

INTRODUCTION

Study of corrosion phenomena associated with the use of molten salts as coolants raised interest in the behaviour of various metal ions in such melts. Gruen & McBeth¹, in the early sixties, studied various transition metal ions in LiCl/KCl eutectic. The purpose of the present letter is an attempt to correlate ESR data with data derived from optical spectroscopy, in particular with respect to the equilibrium between hexa- and tetra-coördinate species of Ti(III) with chlorine ions.

EXPERIMENTAL

High-purity $TiCl_3$ was prepared according to the literature² by reduction of $TiCl_4$ with hydrogen on a tungsten wire, and subsequent purification by sublimation. The tungsten content of the final sample was below the detection limit of conventional chemical tests.

The eutectic was prepared from lithiumchloride and potassium-chloride, p.a. grade of Merck Darmstadt, and used without further purification. Trace amounts of Mn^{2+} were interfering with all measurements. Mixing calculated amounts of the components was followed by powdering in a ball mill. It was dried in a vertical tube, fitted at the bottom with a sintered glass filter through which dry HCl gas was passed, at a temperature of 300°C. This system behaves as a crude form of a fluid bed. Through a 6 mm cock the dry eutectic could be transferred to a roundbottom flask which had been heated and evacuated previously in order to remove adhering water vapour to a considerable extent, and purged with dry argon gas.

Via a ground glass joint the vessel containing the $TiCl_3$ was connected to the flask with eutectic; the $TiCl_3$ was then introduced by gentle shaking. Dosation of a known amount by this procedure is hardly feasible. A part of the mixture thus obtained was admitted to a short ESR sample tube of fused silica (special quality with no observable paramagnetic impurity) that had been attached before to the round bottom flask by means of a ground glass joint and a stopcock. Final mixing was achieved by heating above the melting point. When the liquid appeared homogeneous to the eye the sample tube was molten off the stopcock/joint assembly.

ESR spectra were recorded with a VARIAN V4500 Spectrometer operating at X-band. A temperature of $-180^\circ C$ was obtained by the use of a Varian Low Temperature Accessory.

Using conventional sample tubes it is impossible to carry out measurements on the molten samples due to the high electric conductivity. Therefore samples were kept on the chosen temperature for about one hour and then quenched by dropping the tube in liquid nitrogen.

The spectra were recorded at $-180^\circ C$.

RESULTS AND DISCUSSION

All spectra (150) that were recorded during this study exhibit impurity signals, designated O_1 , O_2 and O_3 in the figures.

O_1 is at $g = 2.00$, possibly originating from stopcock grease or pump oil.

O_2 and O_3 are respectively at $g = 1.95$ and 1.87 , presumably arising from metal impurities.

A Mn^{2+} signal is always disturbingly present. Its hyperfine lines are numbered M_1 through M_6 .

Representative spectra are shown in Figures 1-6. Of these, Figure 1 clearly shows the presence of a broad signal centered at $g = 1.73$, with superimposed on that an intense, rather sharp signal (T), 65 Gauss peak-to-peak, and the impurity signals including the manganese lines.

Since it is a well-known fact that for octahedral Ti(III)-species the relaxation time T_1 is very short, it is assumed that the broad signal should be attributed to octahedrally coordinated Ti(III) and the sharper signal at $g = 1.95$ to tetrahedrally coordinated Ti(III). Both signals are absent in eutectic without added $TiCl_3$.

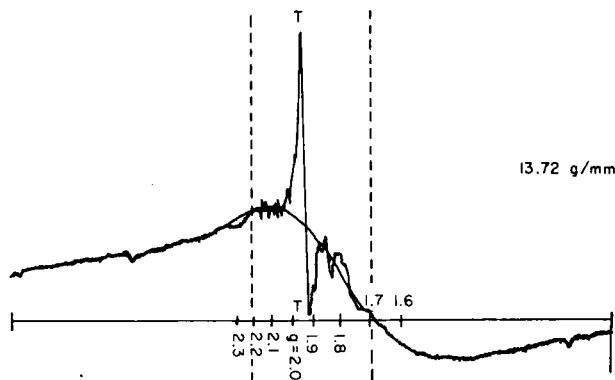


FIG. 1

General shape of ESR spectrum of Ti(III) in LiCl/KCl.
Broad signal (partially hand drawn) of oct. with tetr. signal T
superimposed. Impurities not indicated.

It is possible to make a crude estimate of the ratio $N_{\text{oct}}/N_{\text{tetr}}$ (where N = number of molecules of a type given by the subscript) by putting $N = cc'(\Delta H_{\text{pp}})^2 A_{\text{pp}}$ with ΔH_{pp} = peak-to-peak line width, A_{pp} = peak-to-peak amplitude and c = proportionality factor depending on line shape and c' on relative intensity respectively.

Taking $c_{\text{oct}} = c_{\text{tetr}}$ this relation leads in Fig. 1 to $N_{\text{oct}}/N_{\text{tetr}} = 247$. This is not very remarkable in view of the large excess of chloride ions in the melt.

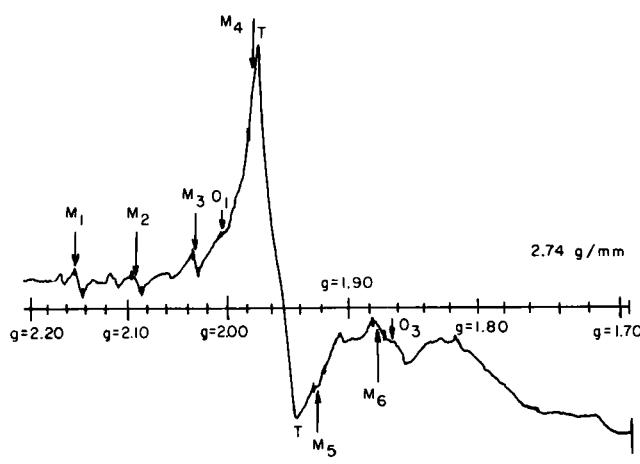
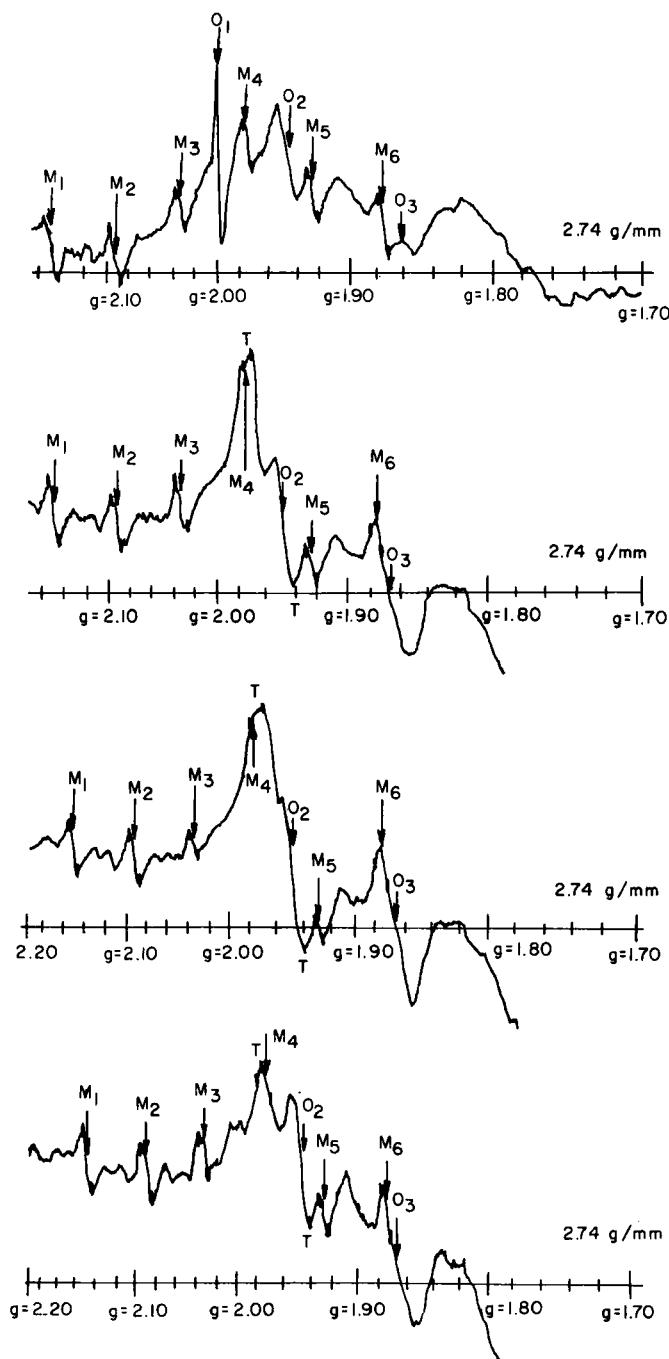



FIG. 2

Central region (indicated by vertical dotted lines) of Fig. 1

TABLE 1

Figure	1	2	3	4	5	6
Sample nr.	19	19	18	18	18	18
H_{\min} (Oe)	1150	2963	2963	2963	2963	2963
H_{\max} (Oe)	5650	3861	3861	3861	3861	3861
Frequ. $\times 10^9$ (Hz)	9.151	9.151	9.157	9.156	9.158	9.158
ϵ_{oct}	1.73	-	-	-	-	-
$\Delta H_{\text{pp(oct)}}$ (Oe)	1400	-	-	-	-	-
ϵ_{tetr}	1.95 ± 0.01	1.96 ± 0.01	-	1.96 ± 0.01	1.96 ± 0.01	1.96 ± 0.01
$\Delta H_{\text{pp(tetr)}}$ (Oe)	65	58	-	60	69	77
Quenching temp.	1000 °C	1000 °C	-	800 °C	1000 °C	400 °C
Measuring temp.	- 180 °C	- 180 °C	- 180 °C	- 180 °C	- 180 °C	- 180 °C
[*] N_{tetr} (see text)	3430	0	830	950	500	

FIGURES 3 (TOP) - 6 (BOTTOM)

Variations in $N_{\text{oct}}/N_{\text{tetr}}$ are then almost entirely due to variations of N_{tetr} . For this reason the spectra of the Figures 2-6 are recorded with decreased sweep range. In this way we also obtained better settings of the spectrometer for the recording of the peak of the tetrahedron. In Table 1 the quantity $N^* = N/c^*$ is used as a measure of N_{tetr} .

Because of the primitive addition of TiCl_3 to the eutectic, the entries in Table 1 have no quantitative significance when related to different samples.

It is apparent that N_{tetr} increases with increasing temperature. The conclusion that there is indeed an equilibrium between two different kinds of surroundings is further supported by the observation that a sample quenched at 1000°C resumed a ratio $N_{\text{oct}}/N_{\text{tetr}}$ after reheating at 400°C that is appreciably smaller than after a quenching from 800°C .

Moreover, with Gruen and McBeth's spectroscopic data for Δ_{tetr} at 400°C and 1000°C of, respectively, 10000 cm^{-1} and 7000 cm^{-1} , and assuming a spin-orbit coupling parameter $\lambda = 150 \text{ cm}^{-1}$, a d^1 -tetrahedron should exhibit g-values at 400°C and 1000°C of 1.940 and 1.914 resp. in the ionic approximation. Having neglected temperature effects on the spin-orbit parameter, it seems quite reasonable to assign the measured value $g = 1.95 \pm 0.01$ to the tetrahedral configuration.

The present preliminary experiments are sufficiently encouraging to continue the experiments with equipment allowing of quantitative manipulation.

The full appreciation of the Ti(III) signal in octahedral surroundings is impossible at the moderately low temperature obtainable with the conventional Low Temperature Accessory. Future measurements should include temperatures at least as low as 20°K .

REFERENCES

1. D.M.Gruen and R.L.McBeth, Pure and Appl. Chem. 6 23 (1963)
2. Inorg. Synth. 7 45.

Received September 25, 1969